

TLDWorkerBee

Team: Austen Christensen, Morgan Lovato, Wei Song

Sponsor: Harlan Mitchell - Honeywell
Mentor: Austin Sanders

Software Testing Document - Version 1

April 5, 2019

1

Table of Contents

1. Introduction 3

2. Unit Testing 4

3. Integration Testing 8

4. Usability Testing 8

5. Conclusion 10

2

1. Introduction

Planes are the most popular way to travel quickly to anywhere around the world. For
instance, a traveler can get from Phoenix to Los Angeles in a little over an hour by plane
when it takes 8+ hours to drive. In order to travel such long distances, these machines
must maintain a cruising altitude of 33,000 to 42,000 feet. Every day, there are over one
hundred-thousand flights scheduled across the globe with up to one million people in
the air at any given point in time. This makes it vital for every plane’s engine to
constantly be working properly since there is nothing stopping a plane from falling out of
the sky other than it’s own momentum.

Our team is TLD Worker Bee, and we are working on the project Prototype Time
Limited Dispatch (TLD) Application for our sponsor, Harlan Mitchell from Honeywell
Aerospace. Honeywell Aerospace is a leading manufacturer of all sorts of aircraft
engines ranging from helicopters to commercial airliners. They are the leading
manufacturer in engine control systems for a variety of private and commercial jets.
These engines and their connected systems generate data every flight that is important
for the functionality of their product. While in flight, an engine is constantly reading
sensor data and storing it on the onboard computer called the Engine Control
Unit(ECU). The computer will read the data and create a time-limited dispatch;
time-limited dispatch allows the degraded redundancy dispatch of aircraft. Aircraft can
be dispatched with certain control system faults and fault combinations for specified
periods of time if the failure rates from those configurations meet certification
requirements. The various system faults and fault combinations are assigned to
dispatch categories according to these failure rates. This gives the dispatch criteria for
the system.

Currently, to gather this data, a technician will physically download the data from the
ECU through a wire connection. They do not check it after every flight, but will connect
periodically to the ECU to retrieve the data. The cumbersome process of physically
connecting to a computer and downloading this data on location greatly limits the
amount of flight data to collect.

Our prototype is a webapp that uses an internet connection to connect to the data
stored in the cloud for a completely wireless experience. It verifies data integrity before
showing the user any data to avoid reading false data. This ensures the mechanic
knows exactly what maintenance to perform on the engine from anywhere in the world.

3

This document lays out our testing plan for our software.

2. Unit Testing

Unit testing is a software testing method. It test the individual units or components,
which is the smallest part of the software, in order to validate that each unit of the
software performs as designed. It is the first level of software testing during the whole
implementation cycle, and it’s performed prior to integration testing or other testings.

There are many benefits for unit testing. The developers will be able to catch any
defects or bugs promptly. The codes need to be modular in order to perform the unit
testing, which makes the code more reusable.

Since our project is written in Python, we will be using pytest for unit testing. The pytest
framework is a mature full-featured Python testing tool, which support both simple unit
testing or complex functional testing for applications and libraries. It also support
parameterization to manage the test cases.

Below are the detailed testing plan, which include a list of units for our programs,
equivalence partitions, boundary values, erroneous values, and selected inputs for
those partitions.

Unit 1: signUp(String Username, String Password, String ComfirmPW, String Email)
Test Item Test Data Test Type Result

Username David Normal Success (when other
test items are correct)

David Erroneous (already
existed in the
database)

Error: username
existed!

A_very_long_usern
ame_which_exceed
_20_characters

Erroneous (username
too long, 20
maximum)

Error: username too
long, 20 maximum!

112233 Erroneous (should
contain at least 1
character)

Error: username
should contain at least
1 character

Null Erroneous (username
should not be empty)

Error: username
should not be empty

4

Password SFhafwo124*@# Normal Success (when other
test items are correct)

So124*@ Erroneous (too short) Error: password must
contain at least 8
character

12345678 Erroneous (too
simple)

Error: password must
contain at least 1
upper case letter, 1
lower case letter and
one special character

Null Erroneous (password
should not be empty)

Error: password
should not be empty

Confirm
Password

SFhafwo124*@# Normal Success (when other
test items are correct)

SFhafwo248*@# Erroneous (Not
match)

Error: The two
password fields didn't
match.

Email Address aa123@nau.edu Normal Success (when other
test items are correct)

aa123 Erroneous (Not an
email address)

Error: Not an email
address

aa123@nau.edu Erroneous (Already
existed in the
database)

Error: Email address
already existed

Null Erroneous (Email
address should not
be empty)

Error: Email address
should not be empty

Unit 2: signIn(String Username, String Password)
Test Item Test Data Test Type Result

Username David Normal csfr token (when other
test items are correct)

5

David2 Normal Username or Password
not correct

Null Erroneous
(username should
not be empty)

Error: username should
not be empty

Password SFhafwo124*@# Normal csfr token (when other
test items are correct)

SFhafwo248*@# Normal Username or Password
not correct

Null Erroneous
(password should
not be empty)

Error: password should
not be empty

Unit 3: getAircraft(String Aircraft_ID)
Test Item Test Data Test Type Result

Aircraft ID 12345 Normal Aircraft Panel

12346 Erroneous (aircraft
not existed)

Error: Aircraft not
existed

12347 Erroneous (current
user do not own this
aircraft)

Error: Current user do
not own this aircraft

Ahiwhfeo Erroneous (not a
legal aircraft ID)

Error: Not a legal
aircraft ID

Null Erroneous (aircraft ID
should not be empty)

Error: Aircraft ID
should not be empty

Unit 4: getChartView(String Aircraft_ID, String Search_Field)
Test Item Test Data Test Type Result

Aircraft ID The same as the Unit 3 as above

Search Field Event 1 Oil
Pressure

Normal Oil Pressure Data

6

Plane Color Erroneous (Do not
have this data field)

Error: Do not have this
data field

Null Erroneous (Search
Field should not be
empty)

Error: Search Field
should not be empty

Unit 5: getTableViewData(String Aircraft_ID)
Test Item Test Data Test Type Result

Aircraft ID The same as the Unit 3 as above

Unit 6: MD5Generator(String TLD_Data)
Test Item Test Data Test Type Result

TLD Data (String) Normal MD5 value

Null Erroneous (TLD
Data should not be
empty)

Error: TLD Data
should not be empty

Unit 7: MD5Checker(String localMD5, String cloudMD5)
Test Item Test Data Test Type Result

MD5 Pairs
(Local MD5,
Cloud MD5)

(MD5, MD5) Normal True / False

(Null, MD5) /
(MD5, Null) /
(Null, Null)

Erroneous (MD5
should not be
empty)

Error: MD5 should not
be empty

Unit 8: parsingTool(File RawDataFile.txt)
Test Item Test Data Test Type Result

Raw Data File Datafile 1 Normal Success

Datafile 2 (without
block num)

Erroneous (without
block num)

Error: Raw datafile
incomplete

Datafile 3 (TLD data
record incomplete)

Erroneous (TLD
data record
incomplete)

Error: Raw datafile
incomplete

7

Datafile 4 (Damage,
or not txt file)

Erroneous (File
damage)

Error: Raw datafile
incomplete

3. Integration Testing

Integration testing is the testing of how individual parts of a program work together; the
components tested in the unit testing are tested to see how they perform as a group.
Integration testing is performed after the completion of unit testing and before the start
of usability testing. The goal of integration testing is to find any problems with how units
interact when they are integrated as a whole. Our team wants to ensure our front end
and back end communicate properly in our final program. We are testing all module
connections and that our data accuracy does not get compromised when the program is
tested as a whole.

To ensure our front end and back end communicate properly, we would test to ensure
Bootstrap (front end) and Django (back end) work together. To test the connection
between the cloud and the back end, we test that the request function that gets the raw
data from the cloud is working properly. To ensure data accuracy does not get
compromised we compare the local and cloud MD5 values.

4. Usability Testing

Aircraft Technicians will utilize the frontend to visualize patterns and trends in engine
activity from the Engine Control Unit to determine what type of maintenance to perform.
This requires that our frontend is vetted and conforms to UI/UX best practices. Usability
testing will strengthen our design by providing insight from a larger pool of users.

Population
The population we are meant to satisfy is certified aircraft technicians. This means we
can assume that our audience has some level of technical expertise. The population will
know the data being displayed very well and will know if something is misplaced.

Methods
Our testing plan will comprise two separate parts:

● Categorical Acceptance: User will be given flashcards with two different
categories written on them. They will be asked to match them according to what
they find most logical.

8

● ​Live Usability: We will record users interacting with our application given a
testing script. The user will be asked to talk out loud about how they think as they
are interacting with the application.

Plan
We plan on selecting a sample of 10-15 individuals, all who are certified aircraft
technicians, to test our program. If they aren’t certified, it will be difficult for the users to
give us useful information and would be inaccurate to the intended audience of our
frontend. We will perform this test on users individually and start them with the
categorical acceptance test. The categorical acceptance test will help us determine how
the user will think about our application prior to ever seeing it. We will use it to
determine the most logical layout of our elements as well as an appropriate color
palette. For this test, we will ask the user to match items from the left column with items
in the right column:

Category

Table View Top

Graph View Middle

Raw Data Download Bottom

Color (color cards can be matched to multiple items in right column)

Blue Aircraft Number

Green PASS

Red FAIL

Black Refresh Button

Purple Graph Background

White Line on Graph

After completing this test, users will be provided a testing script so they can complete a
live usability test. The script will include the following steps:

1. Create an account using access code.
2. Go to aircraft 15672 and view the table view.

9

3. While in table view, go to block 27 and read the data. How easy was it to find on
a scale to 1-10? What would you change and what did you like? Was it easy to
read? Was it accurate?

4. Repeat step 3 looking at blocks 16 and 11.
5. Now go to the graph view for aircraft 16723.
6. Look at the oil temperature over time in block 27. Does the graph line up with

data you saw in step 3? If no, how is it off?
7. Download the raw data file for aircraft 15672.
8. Access that file using the EEI software. Does the data for block 27 match up for

both programs?
9. Logout.

While completing this script, we will record the user so that we can see how they
interact with the application. This will help us determine how easily our items were to
find, as well as show us where users thought these items should be. This will give us a
clear indication as to whether or not our application will require any reorganization or
additional visual cues.

Results
Once our focus group has completed their individual testing sessions, we will compile
the data and see if we can identify any important patterns. We will do so by creating a
table representing commonality among all users. For example, if 70% of users
misidentified item 3 in our testing script, we will reorganize our layout to resolve this.
Similarly, if 70% of users chose Green as the color that best represented the PASS
category, we will adjust our color palette to match. These tests will help lay out the
groundwork for any reorganization (both design and layout-wise) that will improve our
application’s overall usability.

5. Conclusion

With aircrafts being a necessary source of travel for some and a leisure for others, it is
vital to human safety that they are always functioning properly. Our client, Honeywell,
produces many aircraft engines and it is their job to make sure they are always in
working order. If something does go wrong, technicians need to be able to quickly
identify and fix a problem. Our prototype web app is our client’s way of quickly and
easily identifying a problem with and aircraft and this web app should be working
without bugs or any data inaccuracies. To ensure there are no bugs or data
inaccuracies in our web app, our team did multiple types of testing to ensure the
integrity of our program. Our unit testing ensures different components of our program

10

work individually and do not fail with unknown circumstances. The integration testing
ensures these components perform together without error or unknown results and that
our front end and back end are communicating properly. Usability testing for this
program ensure the aircraft technicians that need to use this web app can do so without
confusion or a heavy lesson in how to navigate first. Our sponsor, Harlan Mitchell, is
happy with our current program and is pleased with the accuracy it provides. He feels
we have adequately done the job of allowing aircraft technicians to view accurate, real
time data about aircraft engines.

11

